Home Site Statistics   Contact   About Us   Tuesday, June 19, 2018

users on-line: 2 | Forum entries: 6                 
j0182018 - Back to Home
   Skip Navigation LinksHOME › AREAS OF EXPERTISE › Interpolation Applications › ~ Cubic Spline Method


"Interpolation Solutions"
Cubic Spline Method
X =
Y =

Array X = { , , , , }
Array Y = { , , , , }
Specify New X values = { , , }



[ Initial ArrayValues X: {0,2,4,6,8} ]
[ Initial ArrayValues Y: {0,4,16,36,64} ]
[ Initial SplineX Values specified: {3,5,7} ]

IMPLEMENTATION
Cubic Spline Interpolation

This method provides a great deal of smoothness for interpolations with significantly varying data. It uses weight coefficients on the cubic polynomials to interpolate the data. These coefficients bend the line so that it passes through each of the data points without any erratic behavior or breaks in continuity.

Algorithm Creation

The basic idea of the cubic spline is actually based on a third degree polynomial defined by,

si(x) = ai(x - xi)3 + (x - xi)2 + ... for i=1,2,...n-1


Testing the Cubic Spline Method

In order to test the Spline method as defined above, a new TestSpline() static method has been added and executed. Supporting code and methods are not shown.

           static void TestSpline();
              {
                 ListBox1.Items.Clear();
                 ListBox2.Items.Clear();
                 double[] xarray = new double[] { t1, t2, t3, t4, t5 };
                 double[] yarray = new double[] { t6, t7, t8, t9, t10 };
                 double[] x = new double[] { t11, t12, t13 };
                 double[] y = Interpolation.Spline(xarray, yarray, x);
                 VectorR vx = new VectorR(x);
                 VectorR vy = new VectorR(y);
                 ListBox1.Items.Add(" " + vx.ToString());
                 ListBox2.Items.Add(" " + vy.ToString());
              }

We first defined a set of data points as xarray and yarray. We then compute the y values at the xSpline values specified. The user can manipulate all values and try variations on the arrays themselves as well as specifying new xSpline values.



Other Implementations...


Object-Oriented Implementation
Graphics and Animation
Sample Applications
Ore Extraction Optimization
Vectors and Matrices
Complex Numbers and Functions
Ordinary Differential Equations - Euler Method
Ordinary Differential Equations 2nd-Order Runge-Kutta
Ordinary Differential Equations 4th-Order Runge-Kutta
Higher Order Differential Equations
Nonlinear Systems
Numerical Integration
Numerical Differentiation
Function Evaluation

You are viewing this tab ↓
Skip Navigation Links.


Home

Home Math, Analysis & More,
  established expertise..."

EIGENVALUE SOLUTIONS...
Eigen Inverse Iteration
Rayleigh-Quotient Method

INTERPOLATION APPLICATIONS...
Cubic Spline Method
Newton Divided Difference

 

Applied Mathematical Algorithms

     Home Complex Functions
A complex number z = x + iy, where...

Complex Functions
     Home Non-Linear Systems
Non-linear system methods...

Non Linear Systems
     Home Differentiation
Construction of differentiation...

Differentiation
     Home Integration
Consider the function where...

Integration
 
  KMP Engineering  
 Location: 2461 E Orangethorpe Ave. 
 Fullerton, CA 92631 USA Email:info@keystoneminingpost.com

2006-2018 All rights reserved© KMP Engineering