Home Site Statistics  |   Contact  |   About Us       Wednesday, April 01, 2020   

j0110924 - Back to Home
   Skip Navigation LinksHOME › AREAS OF EXPERTISE › Interpolation Applications › ~ Cubic Spline Method


"Interpolation Solutions"
Cubic Spline Method
X =
Y =

Array X = { , , , , }
Array Y = { , , , , }
Specify New X values = { , , }



[ Initial ArrayValues X: {0,2,4,6,8} ]
[ Initial ArrayValues Y: {0,4,16,36,64} ]
[ Initial SplineX Values specified: {3,5,7} ]

IMPLEMENTATION
Cubic Spline Interpolation

This method provides a great deal of smoothness for interpolations with significantly varying data. It uses weight coefficients on the cubic polynomials to interpolate the data. These coefficients bend the line so that it passes through each of the data points without any erratic behavior or breaks in continuity.

Algorithm Creation

The basic idea of the cubic spline is actually based on a third degree polynomial defined by,

si(x) = ai(x - xi)3 + (x - xi)2 + ... for i=1,2,...n-1


Testing the Cubic Spline Method

In order to test the Spline method as defined above, a new TestSpline() static method has been added and executed. Supporting code and methods are not shown.

           static void TestSpline();
              {
                 ListBox1.Items.Clear();
                 ListBox2.Items.Clear();
                 double[] xarray = new double[] { t1, t2, t3, t4, t5 };
                 double[] yarray = new double[] { t6, t7, t8, t9, t10 };
                 double[] x = new double[] { t11, t12, t13 };
                 double[] y = Interpolation.Spline(xarray, yarray, x);
                 VectorR vx = new VectorR(x);
                 VectorR vy = new VectorR(y);
                 ListBox1.Items.Add(" " + vx.ToString());
                 ListBox2.Items.Add(" " + vy.ToString());
              }

We first defined a set of data points as xarray and yarray. We then compute the y values at the xSpline values specified. The user can manipulate all values and try variations on the arrays themselves as well as specifying new xSpline values.



Other Implementations...


Object-Oriented Implementation
Graphics and Animation
Sample Applications
Ore Extraction Optimization
Vectors and Matrices
Complex Numbers and Functions
Ordinary Differential Equations - Euler Method
Ordinary Differential Equations 2nd-Order Runge-Kutta
Ordinary Differential Equations 4th-Order Runge-Kutta
Higher Order Differential Equations
Nonlinear Systems
Numerical Integration
Numerical Differentiation
Function Evaluation


You are viewing this tab ↓
Skip Navigation Links.



Consulting Services - Back to Home
Home

Home Math, Analysis,
  expertise..."

EIGENVALUE SOLUTIONS...
Eigen Inverse Iteration
Rayleigh-Quotient Method
Cubic Spline Method

 

Applied Mathematical Algorithms

Home A complex number z = x + iy, where...

Complex Functions
Home Non-linear system methods...

Non Linear Systems
Home Construction of differentiation...

Differentiation
Home Consider the function where...

Integration
 
About Us

KMP Engineering is an independent multidisciplinary engineering consulting company specializing in mathematical algorithms.

KMP Website >
Site Statistics >
Contact Us

KMP ENGINEERING
2461 E Orangethorpe Ave Fullerton, CA 92631 USA info@keystoneminingpost.com
Site Map

> Home
> Areas of Expertise
> Reference Items
> Managed Services
> Login

Mining & Software Engineering

Home
Since 2006 All Rights Reserved  © KMP Engineering LINKS | PRIVACY POLICY | LEGAL NOTICE