Home Login  |   Contact  |   About Us       Tuesday, May 17, 2022   

j0110924 - Back to Home
   Skip Navigation LinksHOME ›  AREAS OF EXPERTISE ›   Numerical Difference



Skip Navigation Links.

OVERVIEW
Numerical Differentiation

Numerical differentiation deals with the calculation of derivatives of a smooth function:

y = f(x)

defined on a discrete set of grid points (x0, x1, x2... xN).

The construction of numerical approximations of the derivatives is based on finite difference formalisms.

One approach we use is the use of Taylor series approximations. The Taylor series expansion method has the advantage of providing information about the error involved in the approximation. The McLaurin series expansion techniques will also yield similar approximations.

Finite Difference Formulas

The derivation of the finite difference approximations for the derivatives of f(x) is based on forward and backward Taylor series expansion of f(x) about x, such as:

f(x + h) = f(x) + hf'(x) + h2/2! f''(x) + h3/3! + f'''(x) + h4/4! f(4)(x) + ...
f(x - h) = f(x) - hf'(x) + h2/2! f''(x) - h3/3! + f'''(x) + h4/4! f(4)(x) - ...
f(x + 2h) = f(x) + 2hf'(x) + (2h)2/2! f''(x) + (2h)3/3! + f'''(x) + (2h)4/4! f(4)(x) + ...
f(x - 2h) = f(x) + 2hf'(x) + (2h)2/2! f''(x) - (2h)3/3! + f'''(x) + (2h)4/4! f(4)(x) - ...

where h = Δx. From the above equations, one can easily obtain the sums and differences of the series:

f(x + h) + f(x - h) = 2f(x) + h2 f''(x) + h4/12 f(4)(x) + ...
f(x + h) - f(x - h) = 2hf'(x) + h3/3 f'''(x) + ...
f(x + 2h) + f(x - 2h) = 2f(x) + 4h2 f''(x) + 4h4/3 f(4)(x) + ...
f(x + 2h) - f(x - 2h) = 4hf'(x) + 8h3/3 f'''(x) + ...

Note the sums contains only even derivatives, whereas the differences contain only odd derivatives. The above equations can be regarded as coupled equations that can be solved for various derivatives of f(x). The number of equations involved and the number of terms kept in each equation depend on the order of the derivative and the desired degree of accuracy.

Please select from the menu  →    NUMERICAL DIFFERENTIATION  (press to select) 








Consulting Services - Back to Home
Home

Home Math, Analysis,
  expertise..."

EIGENVALUE
SOLUTIONS...


> Rayleigh-Quotient Method

> Cubic Spline Method

 

Applied Mathematical Algorithms

Home

ComplexFunctions

Home

NonLinear
Home

Differentiation
Home

Integration
About Us


KMP Software Engineering is an independent multidisciplinary engineering consulting company specializing in mathematical algorithms.
Areas of
Expertise


SpecialFunctions
VectorsMatrices
OptimizationMethods
ComplexNumbers
Interpolation
CurveFitting
NonLinearSystems
LinearEquations
DistributionFunctions
NumericalDifferentiation
NumericalIntegration
DifferentialEquations
Smalltalk
FiniteBoundary
Eigenvalue
Graphics
Understanding
Mining


MiningMastery
MineralNews
MineralCommodities
MineralForum
Crystallography
Services


NumericalModeling
WebServices
MainframeServices
OutsourceServices

LINKED IN
KMP ARTICLES
Brand





Home

Login

Contact
Since 2006 All Rights Reserved  © KMP Software Engineering LINKS | PRIVACY POLICY | LEGAL NOTICE