HOME ›  AREAS OF EXPERTISE  #1 ›   Interpolation Apps ›  ~ Lagrange Method

 "Interpolation Solutions" Lagrange Method
 X = (2, 3, 1)
 Y = (4, 9, 1)

 Array X = { , , , , } Array Y = { , , , , } Specify New X values = { , , } [ Initial ArrayValues X: {1,2,3,4,5} ] [ Initial ArrayValues Y: {1,4,9,16,25} ] [ Initial LagrangeX Values specified: {2,3,1} ]

IMPLEMENTATION
Lagrange Interpolation

The Lagrange interpolation is a classical technique for performing interpolation. Sometimes this interpolation is also called the polynomial interpolation. In the first order approximation, it reduces to a linear interpolation, a concept also applied in (see Cubic Spline Method).

Algorithm Creation

For a given set of n + 1 data points (x0,y0),(x1,y1),..., (xn,yn), where no two xi are the same, the interpolation polynomial in the Lagrange form is a linear combination:

 y = f(x) = ∑i=0n li(x) f(xi)

Testing the Lagrange Method

In order to test the Lagrange method as defined above, a new TestLagrange() static method has been added and executed. Supporting code and methods are not shown.

static void TestLagrange();
{
ListBox1.Items.Clear();
ListBox2.Items.Clear();
double[] xarray = new double[] { t1, t2, t3, t4, t5 };
double[] yarray = new double[] { t6, t7, t8, t9, t10 };
double[] x = new double[] { t11, t12, t13 };
double[] y = Interpolation.Lagrange(xarray, yarray, x);
VectorR vx = new VectorR(x);
VectorR vy = new VectorR(y);
}

We first defined a set of data points as xarray and yarray. We then compute the y values at the xLagrange values specified. The user can manipulate all values and try variations on the arrays themselves as well as specifying new xLagrange values.

 Other Implementations...

 Object-Oriented Implementation Graphics and Animation Sample Applications Ore Extraction Optimization Vectors and Matrices Complex Numbers and Functions Ordinary Differential Equations - Euler Method Ordinary Differential Equations 2nd-Order Runge-Kutta Ordinary Differential Equations 4th-Order Runge-Kutta Higher Order Differential Equations Nonlinear Systems Numerical Integration Numerical Differentiation Function Evaluation

 Quotes

Math, Analysis,
expertise..."

EIGENVALUE
SOLUTIONS...

> Rayleigh-Quotient Method

> Cubic Spline Method

 Applied Mathematical Algorithms
 ComplexFunctions NonLinear Differentiation Integration
 About Us KMP Software Engineering is an independent multidisciplinary engineering consulting company specializing in mathematical algorithms.       (About Us) → Areas of Expertise SpecialFunctions VectorsMatrices OptimizationMethods ComplexNumbers Interpolation CurveFitting NonLinearSystems LinearEquations DistributionFunctions NumericalDifferentiation NumericalIntegration DifferentialEquations Smalltalk FiniteBoundary Eigenvalue Graphics UnderstandingMining MiningMastery MineralNews MineralCommodities MineralForum Crystallography Services NumericalModeling WebServices MainframeServices OutsourceServices LINKED IN MINE REVIEW(by G.Pacheco) Brand Login Contact