 Login  |   Contact  |   About Us       Friday, December 1, 2023  ~ Euler Method ~ Runge-Kutta (2nd) ~ Runge-Kutta (4th) ~ Higher-Order ~ RungeKutta-Fehlberg

DISCUSSION
Discussion of Runge-Kutta for Systems The methods discussed in previous tabs (refer to menu)  "ODE - Euler Method" and   "ODE - 2nd-Order Runge-Kutta" and   "ODE - 4th-Order Runge-Kutta" apply to only a single first-order ordinary differential equation as described in these tabs.

However, most problems in engineering governed by differential equations are either high-order equations or coupled differential equation systems.

A high-order differential equation can always be transformed into a coupled first-order system of equations. The trick is to expand higher-order derivatives into a series of first-order equations.

A very common example described in technical literature applies to model a spring-mass system with damping, which describes the use and calculation of second-order differential equations. We followed very closely these techniques for our own implementation.

 m d2x / d t2 = -kx - b dx/dt

where k is the spring constant and b is the damping coefficient. Since the velocity:

 v = dx/dt

the equation of motion for a spring-mass system can be rewritten in terms of two first-order differential equations:

 dv/dt = -k/m x - b/m v dx/dt = v

In the above equation, the derivative of v is a function of v and x, and the derivative of x is a function of v. Since the solution of v as a function of time depends on x and the solution of x as a function of time depends on v, the two equations are coupled and must be solved simultaneously.

Most of the differential equations in engineering are higher-order equations. This means that they must be expanded into a series of first-order differential equations before they can be solved using numerical methods.

The next tab shows extending the fourth-order Runge-Kutta method discussed previously to a system of ordinary differential equations.

 Other Applications...

 Object-Oriented Implementation Graphics and Animation Sample Applications Ore Extraction Optimization Vectors and Matrices Complex Numbers and Functions Ordinary Differential Equations - Euler Method Ordinary Differential Equations 2nd-Order Runge-Kutta Ordinary Differential Equations 4th-Order Runge-Kutta Higher Order Differential Equations Nonlinear Systems Numerical Integration Numerical Differentiation

 Quotes  Math, Analysis,
expertise..."

EIGENVALUE
SOLUTIONS...

> Rayleigh-Quotient Method

> Cubic Spline Method

 Applied Mathematical Algorithms ComplexFunctions NonLinear Differentiation Integration
 About Us KMP Software Engineering is an independent multidisciplinary engineering consulting company specializing in mathematical algorithms. → Areas of Expertise SpecialFunctions VectorsMatrices OptimizationMethods ComplexNumbers Interpolation CurveFitting NonLinearSystems LinearEquations DistributionFunctions NumericalDifferentiation NumericalIntegration DifferentialEquations Smalltalk FiniteBoundary Eigenvalue Graphics UnderstandingMining MiningMastery MineralNews MineralCommodities MineralForum Crystallography Services NumericalModeling WebServices MainframeServices OutsourceServices LINKED IN KMP ARTICLES Brand Login Contact