Home Site Statistics   Contact   About Us   Saturday, July 21, 2018

users on-line: 2 | Forum entries: 6                 
j0110924 - Back to Home
   Skip Navigation LinksHOME › AREAS OF EXPERTISE › Use of Numerical Differentiation › ~ Forward Difference Method


      Skip Navigation Links
   FORWARD DIFFERENCE METHOD   
   IMPLEMENTATION   
   OUR SOLUTIONS   
 

METHODS
Forward Difference Method

The forward finite difference can be obtained from the equation shown under the "Overview - Numerical Differentiation" tab. The first four derivatives of the function f(x) are given by the following formulas:

f'(x) = f(x + h) - f(x)
                 h
f''(x) = f(x + 2h) - 2f(x + h) + f(x)
                      h2
f'''(x) = f(x + 3h) - 3f(x + 2h) + 3(f + h) - f(x)
                            h3
f(4)(x) = f(x + 4h) - 4f(x + 3h) + 6f(x + 2h) - 4f(x + h) + f(x)
                                    h4

The above equations are usually not used to compute derivatives because they have a large truncation error (order of O(h)). The common practice is to use expressions of O(h2). To obtain forward difference formulas of this order, it is necessary to retain more terms in the Taylor series. Below are listed the results (without derivations):

f'(x) = -3f(x) + 4f(x + h) - f(x + 2h)
                     2h
f''(x) = 2f(x) - 5f(x + h) + 4f(x + 2h) - f(x +3h)
                             h2
f'''(x) = -5f(x) + 18f(x + h) - 24f(x + 2h) + 14f(x +3h) - 3f(x +4h)
                                      2h3
f(4)(x) = 3f(x) - 14f(x + h) + 26f(x + 2h) - 24f(x +3h) + 11f(x +4h) - 2f(x + 5h)
                                                  h4

These equations will be used to implement the Forward Difference Method as shown in the next tab. It should be noted that many methods exist to accomplish similar results with varying degrees of accuracy, such as, Backward Difference Method, Central Difference Method, Extended Central Difference Method, Richardson Extrapolation, Derivatives by Interpolation and others.





You are viewing this tab ↓
Skip Navigation Links.


Home

Home Math, Analysis & More,
  established expertise..."

EIGENVALUE SOLUTIONS...
Eigen Inverse Iteration
Rayleigh-Quotient Method

INTERPOLATION APPLICATIONS...
Cubic Spline Method
Newton Divided Difference

 

Applied Mathematical Algorithms

     Home Complex Functions
A complex number z = x + iy, where...

Complex Functions
     Home Non-Linear Systems
Non-linear system methods...

Non Linear Systems
     Home Differentiation
Construction of differentiation...

Differentiation
     Home Integration
Consider the function where...

Integration
 
  KMP Engineering  
 Location: 2461 E Orangethorpe Ave. 
 Fullerton, CA 92631 USA Email:info@keystoneminingpost.com

2006-2018 All rights reserved© KMP Engineering