Home Site Statistics  |   Contact  |   About Us       Tuesday, September 21, 2021   

j0182018 - Back to Home



Skip Navigation Links.

   Skip Navigation LinksHOME ›  AREAS OF EXPERTISE ›   Numerical Difference ›  ~ Forward Difference



METHODS
Forward Difference Method

The forward finite difference can be obtained from the equation shown under the "Overview - Numerical Differentiation" tab. The first four derivatives of the function f(x) are given by the following formulas:

f'(x) = f(x + h) - f(x)
                 h
f''(x) = f(x + 2h) - 2f(x + h) + f(x)
                      h2
f'''(x) = f(x + 3h) - 3f(x + 2h) + 3(f + h) - f(x)
                            h3
f(4)(x) = f(x + 4h) - 4f(x + 3h) + 6f(x + 2h) - 4f(x + h) + f(x)
                                    h4

The above equations are usually not used to compute derivatives because they have a large truncation error (order of O(h)). The common practice is to use expressions of O(h2). To obtain forward difference formulas of this order, it is necessary to retain more terms in the Taylor series. Below are listed the results (without derivations):

f'(x) = -3f(x) + 4f(x + h) - f(x + 2h)
                     2h
f''(x) = 2f(x) - 5f(x + h) + 4f(x + 2h) - f(x +3h)
                             h2
f'''(x) = -5f(x) + 18f(x + h) - 24f(x + 2h) + 14f(x +3h) - 3f(x +4h)
                                      2h3
f(4)(x) = 3f(x) - 14f(x + h) + 26f(x + 2h) - 24f(x +3h) + 11f(x +4h) - 2f(x + 5h)
                                                  h4

These equations will be used to implement the Forward Difference Method as shown in the next tab. It should be noted that many methods exist to accomplish similar results with varying degrees of accuracy, such as, Backward Difference Method, Central Difference Method, Extended Central Difference Method, Richardson Extrapolation, Derivatives by Interpolation and others.


















Other Implementations...


Object-Oriented Implementation
Graphics and Animation
Sample Applications
Ore Extraction Optimization
Vectors and Matrices
Complex Numbers and Functions
Ordinary Differential Equations - Euler Method
Ordinary Differential Equations 2nd-Order Runge-Kutta
Ordinary Differential Equations 4th-Order Runge-Kutta
Higher Order Differential Equations
Nonlinear Systems
Numerical Integration
Numerical Differentiation







Consulting Services - Back to Home
Home

Home Math, Analysis,
  expertise..."

EIGENVALUE SOLUTIONS...
Eigen Inverse Iteration
Rayleigh-Quotient Method
Cubic Spline Method

 

Applied Mathematical Algorithms

Home A complex number z = x + iy, where...

Complex Functions
Home Non-linear system methods...

Non Linear Systems
Home Construction of differentiation...

Differentiation
Home Consider the function where...

Integration
 
About Us

KMP Engineering is an independent multidisciplinary engineering consulting company specializing in mathematical algorithms.

  ABOUT
  SITE STATISTICS
Contact Us

KMP ENGINEERING
2461 E Orangethorpe Ave Fullerton, CA 92631 USA info@keystoneminingpost.com
Site Map

   Home
   Areas of Expertise
   Reference Items
   Managed Services
   Login

Mining & Software Engineering

Home
Since 2006 All Rights Reserved  © KMP Engineering LINKS | PRIVACY POLICY | LEGAL NOTICE