Home Login  |   Contact  |   About Us       Thursday, January 2, 2025   

j0182018 - Back to Home
   Skip Navigation LinksHOME ›  AREAS OF EXPERTISE  #2 ›   Numerical Difference ›  ~ Forward Difference



Skip Navigation Links.




METHODS
Forward Difference Method

The forward finite difference can be obtained from the equation shown under the "Overview - Numerical Differentiation" tab. The first four derivatives of the function f(x) are given by the following formulas:

f'(x) = f(x + h) - f(x)
                 h
f''(x) = f(x + 2h) - 2f(x + h) + f(x)
                      h2
f'''(x) = f(x + 3h) - 3f(x + 2h) + 3(f + h) - f(x)
                            h3
f(4)(x) = f(x + 4h) - 4f(x + 3h) + 6f(x + 2h) - 4f(x + h) + f(x)
                                    h4

The above equations are usually not used to compute derivatives because they have a large truncation error (order of O(h)). The common practice is to use expressions of O(h2). To obtain forward difference formulas of this order, it is necessary to retain more terms in the Taylor series. Below are listed the results (without derivations):

f'(x) = -3f(x) + 4f(x + h) - f(x + 2h)
                     2h
f''(x) = 2f(x) - 5f(x + h) + 4f(x + 2h) - f(x +3h)
                             h2
f'''(x) = -5f(x) + 18f(x + h) - 24f(x + 2h) + 14f(x +3h) - 3f(x +4h)
                                      2h3
f(4)(x) = 3f(x) - 14f(x + h) + 26f(x + 2h) - 24f(x +3h) + 11f(x +4h) - 2f(x + 5h)
                                                  h4

These equations will be used to implement the Forward Difference Method as shown in the next tab. It should be noted that many methods exist to accomplish similar results with varying degrees of accuracy, such as, Backward Difference Method, Central Difference Method, Extended Central Difference Method, Richardson Extrapolation, Derivatives by Interpolation and others.


















Other Implementations...


Object-Oriented Implementation
Graphics and Animation
Sample Applications
Ore Extraction Optimization
Vectors and Matrices
Complex Numbers and Functions
Ordinary Differential Equations - Euler Method
Ordinary Differential Equations 2nd-Order Runge-Kutta
Ordinary Differential Equations 4th-Order Runge-Kutta
Higher Order Differential Equations
Nonlinear Systems
Numerical Integration
Numerical Differentiation







   Quotes

Consulting Services - Back to Home


Home

Home Math, Analysis,
  expertise..."

EIGENVALUE
SOLUTIONS...


> Rayleigh-Quotient Method

> Cubic Spline Method

 

Applied Mathematical Algorithms

Home

ComplexFunctions

Home

NonLinear
Home

Differentiation
Home

Integration
About Us


KMP Software Engineering is an independent multidisciplinary engineering consulting company specializing in mathematical algorithms.

      (About Us) →
Areas of
Expertise


SpecialFunctions
VectorsMatrices
OptimizationMethods
ComplexNumbers
Interpolation
CurveFitting
NonLinearSystems
LinearEquations
DistributionFunctions
NumericalDifferentiation
NumericalIntegration
DifferentialEquations
Smalltalk
FiniteBoundary
Eigenvalue
Graphics
Understanding
Mining


MiningMastery
MineralNews
MineralCommodities
MineralForum
Crystallography
Services


NumericalModeling
WebServices
MainframeServices
OutsourceServices

LINKED IN
MINE REVIEW(by G.Pacheco)
Brand





Home

Login

Contact
Since 2006 All Rights Reserved  © KMP Software Engineering LINKS | PRIVACY POLICY | LEGAL NOTICE