Home Site Statistics  |   Contact  |   About Us       Wednesday, August 12, 2020   

j0110924 - Back to Home



Skip Navigation Links.

   Skip Navigation LinksHOME ›  AREAS OF EXPERTISE ›   Multiple Eigenvalue  ›  ~ Eigenvalue Inverse


"Eigenvalue Solutions"
Inverse Iteration Method
λ =
x =

Matrix A = { { , , }, { , , }, { , , } }
Calculate eigenvalue closest to:



[ Initial Values: {4,3,6},{3,7,1},{6,1,9} ]

IMPLEMENTATION
Inverse Iteration Method

The inverse iteration is an iteration algorithm based on the Power Method, please refer to "Eigenvalue Power Method".

Algorithm

By definition, if λ is an eigenvalue of matrix A, then 1/λ is an eigenvalue of A-1. This concept gave us the idea to create a method to compute the smallest eigenvalue of A.

Arrange eigenvalues of A-1 such that

|λn-1| > |λn-1-1| >= |λ1-1|

Then apply the power method to A-1. It is possible to explicitly compute the inverse matrix of A, which is efficient because it has to be done only once. Alternatively, it is possible to solve,

Axk+1 = x x

for xk+1 by using an efficient algebra solver such as LU factorization, since it only has to be done once.

The power and the new inverse iteration methods only compute the eigenvalue with the largest or smallest absolute value, and its corresponding eigenvector. By employing the power and inverse method, it is actually possible to calculate the value closest to any number N.

Running this real-time set up produces the results shown above.

The reader can try variations by entering new values to Matrix A as well as setting new eigenvalue closest parameter values.

Testing the Inverse Iteration Method

In order to test the Inverse Iteration method as defined above, a new TestInverse() static method has been added and executed. Supporting code and methods are not shown.

           static void TestInverse();
              {
                 ListBox1.Items.Clear();
                 ListBox2.Items.Clear();
                 MatrixR A = new MatrixR(new double[,] { { t1, t2, t3 }, { t4, t5, t6 },
                  { t7, t8, t9 } });
                 VectorR x;
                 double lambda;
                 Eigenvalue.Inverse(A, t10, 1e-5, out x, out lambda);
                 ListBox1.Items.Add(" " + lambda);
                 ListBox2.Items.Add(" " + x);
              }



Other Implementations...


Object-Oriented Implementation
Graphics and Animation
Sample Applications
Ore Extraction Optimization
Vectors and Matrices
Complex Numbers and Functions
Ordinary Differential Equations - Euler Method
Ordinary Differential Equations 2nd-Order Runge-Kutta
Ordinary Differential Equations 4th-Order Runge-Kutta
Higher Order Differential Equations
Nonlinear Systems
Numerical Integration
Numerical Differentiation
Function Evaluation

Consulting Services - Back to Home
Home

Home Math, Analysis,
  expertise..."

EIGENVALUE SOLUTIONS...
Eigen Inverse Iteration
Rayleigh-Quotient Method
Cubic Spline Method

 

Applied Mathematical Algorithms

Home A complex number z = x + iy, where...

Complex Functions
Home Non-linear system methods...

Non Linear Systems
Home Construction of differentiation...

Differentiation
Home Consider the function where...

Integration
 
About Us

KMP Engineering is an independent multidisciplinary engineering consulting company specializing in mathematical algorithms.

KMP Website >
Site Statistics >
Contact Us

KMP ENGINEERING
2461 E Orangethorpe Ave Fullerton, CA 92631 USA info@keystoneminingpost.com
Site Map

> Home
> Areas of Expertise
> Reference Items
> Managed Services
> Login

Mining & Software Engineering

Home
Since 2006 All Rights Reserved  © KMP Engineering LINKS | PRIVACY POLICY | LEGAL NOTICE