Home Login  |   Contact  |   About Us       Tuesday, May 17, 2022   

Pj0182295- Back to Home
   Skip Navigation LinksHOME ›  AREAS OF EXPERTISE ›   Optimization Methods ›  ~ Newton Method



Skip Navigation Links.



"Optimization Solution"
Newton Optimization Method
Minimum =
      Value =

f(x) = 1.6 x3 + 3x2 - 2x
Initial Value =
[ Tolerance: 1.0e-5]




IMPLEMENTATION
Newton Method Optimization

It is also possible to use the Newton's root seeking method to find the minimum, maximum, or saddle point of a function, because the derivative of the targeted function is zero at these points.

In this method, the minimum is not bracketed and only one 1 initial guess value of the solution is needed to get the iterative process started to find the minimum of a linear function.

Algorithm Creation

The Newton method uses the following iteration relation:

xn+1 = xn - f'(xn) / f''(xn)

where f'(x) and f''(x) are the first and second derivatives of a function f(x).



Testing the Newton Method

We use the Newton method to find the minimum of a nonlinear function. To test it out, we find the minimum of the same function used to test the Bisection method. Supporting code and methods are not shown.

           static void TestNewton();
              {
                 ListBox1.Items.Clear();
                 ListBox2.Items.Clear();
                 double result = Optimization.Newton(f, t1, 1.0e-5);
                 ListBox1.Items.Add("x = " + result.ToString());
                 ListBox2.Items.Add("f(x) = " + f(result).ToString());
              }

To test the Newton method, we find the minimum of the same nonlinear function f(x)=1.6x3+3x2-2x used in the Bisection method (see Bisection Method). The user can manipulate initial values as desired.



Other Implementations...


Object-Oriented Implementation
Graphics and Animation
Sample Applications
Ore Extraction Optimization
Vectors and Matrices
Complex Numbers and Functions
Ordinary Differential Equations - Euler Method
Ordinary Differential Equations 2nd-Order Runge-Kutta
Ordinary Differential Equations 4th-Order Runge-Kutta
Higher Order Differential Equations
Nonlinear Systems
Numerical Integration
Numerical Differentiation
Function Evaluation


Consulting Services - Back to Home
Home

Home Math, Analysis,
  expertise..."

EIGENVALUE
SOLUTIONS...


> Rayleigh-Quotient Method

> Cubic Spline Method

 

Applied Mathematical Algorithms

Home

ComplexFunctions

Home

NonLinear
Home

Differentiation
Home

Integration
About Us


KMP Software Engineering is an independent multidisciplinary engineering consulting company specializing in mathematical algorithms.
Areas of
Expertise


SpecialFunctions
VectorsMatrices
OptimizationMethods
ComplexNumbers
Interpolation
CurveFitting
NonLinearSystems
LinearEquations
DistributionFunctions
NumericalDifferentiation
NumericalIntegration
DifferentialEquations
Smalltalk
FiniteBoundary
Eigenvalue
Graphics
Understanding
Mining


MiningMastery
MineralNews
MineralCommodities
MineralForum
Crystallography
Services


NumericalModeling
WebServices
MainframeServices
OutsourceServices

LINKED IN
KMP ARTICLES
Brand





Home

Login

Contact
Since 2006 All Rights Reserved  © KMP Software Engineering LINKS | PRIVACY POLICY | LEGAL NOTICE