Home Site Statistics  |   Contact  |   About Us       Tuesday, September 21, 2021   

Pj0182295- Back to Home

Skip Navigation Links.

   Skip Navigation LinksHOME ›  AREAS OF EXPERTISE ›   Distribution Function ›  ~ Cauchy Distribution

"Distribution Functions"
Cauchy Distribution Method
Cauchy Distribution Results

Number of Points:
Number of Bins:

[ Initial Number of Bins: {20) ]
[ Initial Number of Points: {2000} ]

Cauchy Distribution Method

The Cauchy distribution, also called the Lorentzian distribution, is a continous distribution describing resonance behavior. This distribution plays an important part in physics and engineering because it is the solution to the differential equation describing forced resonance. In spectroscopy, it describes the line shape of spectral lines which are broadened by many mechanisms, including resonance broadening.

Probability Density Function

The probability density function for the Cauchy distribution can be written in the form:

f(x;αç) = b / π[b2 + (x - a] 2

here, ç is the location parameter, specifying the location of the resonance peak of the distribution, and b is the scale parameter which specifies the half width at the half maximum.

Cauchy Random Number Generator

It is possible to use the following formula, based on an inverse transformation, to create Cauchy random distribution:

Cauchy(a,b) = a + b[tan(π u(0,1) - 0.5]

Where u(0,1) is the uniform random distribution defined in the range of [0,1].

Testing the Cauchy Distribution Method

To test the Cauchy Distribution method, a new static method has been added. The TestCauchyDistribution() method has been written and executed. No additional code is shown. The user can change variables as desired.

For the test, two parameters were set:

number of bins = 20; (nBins)
number of points = 2000; (nPoints)

where the parameter (nBins) is the number of bins in the histogram and (nPoints) is the number of random points. A random array is created using the cauchy distribution. A comparison is made between the histogram of random data and the theoretical probability density function of the cauchy distribution. One can see the results from the cauchy random generator are very close to the theoretical cauchy distribution function.

Running this example generates the results shown above.

           static void TestCauchyDistribution();
                  for (int i = 0; i < nBins; i++)
                     ListBox1.Items.Add(" x = " + xdata[i] + "," + " - - - - -> Random Data = " + ydata[i] + "," + " - - - - -> Density Distribution = " + Math.Round(ydistribution[i] * normalizeFactor, 0).ToString());

Other Implementations...

Object-Oriented Implementation
Graphics and Animation
Sample Applications
Ore Extraction Optimization
Vectors and Matrices
Complex Numbers and Functions
Ordinary Differential Equations - Euler Method
Ordinary Differential Equations 2nd-Order Runge-Kutta
Ordinary Differential Equations 4th-Order Runge-Kutta
Higher Order Differential Equations
Nonlinear Systems
Numerical Integration
Numerical Differentiation
Function Evaluation

Consulting Services - Back to Home

Home Math, Analysis,

Eigen Inverse Iteration
Rayleigh-Quotient Method
Cubic Spline Method


Applied Mathematical Algorithms

Home A complex number z = x + iy, where...

Complex Functions
Home Non-linear system methods...

Non Linear Systems
Home Construction of differentiation...

Home Consider the function where...

About Us

KMP Engineering is an independent multidisciplinary engineering consulting company specializing in mathematical algorithms.

Contact Us

2461 E Orangethorpe Ave Fullerton, CA 92631 USA info@keystoneminingpost.com
Site Map

   Areas of Expertise
   Reference Items
   Managed Services

Mining & Software Engineering

Since 2006 All Rights Reserved  © KMP Engineering LINKS | PRIVACY POLICY | LEGAL NOTICE