Home Login  |   Contact  |   About Us       Thursday, November 28, 2024   

Pj0182295- Back to Home
   Skip Navigation LinksHOME ›  AREAS OF EXPERTISE  #2 ›   Distribution Function ›  ~ Cauchy Distribution



Skip Navigation Links.



"Distribution Functions"
Cauchy Distribution Method
Cauchy Distribution Results



Number of Points:
Number of Bins:



[ Initial Number of Bins: {20) ]
[ Initial Number of Points: {2000} ]

IMPLEMENTATION
Cauchy Distribution Method

The Cauchy distribution, also called the Lorentzian distribution, is a continous distribution describing resonance behavior. This distribution plays an important part in physics and engineering because it is the solution to the differential equation describing forced resonance. In spectroscopy, it describes the line shape of spectral lines which are broadened by many mechanisms, including resonance broadening.


Probability Density Function

The probability density function for the Cauchy distribution can be written in the form:

f(x;αç) = b / π[b2 + (x - a] 2

here, ç is the location parameter, specifying the location of the resonance peak of the distribution, and b is the scale parameter which specifies the half width at the half maximum.


Cauchy Random Number Generator

It is possible to use the following formula, based on an inverse transformation, to create Cauchy random distribution:

Cauchy(a,b) = a + b[tan(π u(0,1) - 0.5]

Where u(0,1) is the uniform random distribution defined in the range of [0,1].



Testing the Cauchy Distribution Method

To test the Cauchy Distribution method, a new static method has been added. The TestCauchyDistribution() method has been written and executed. No additional code is shown. The user can change variables as desired.

For the test, two parameters were set:

number of bins = 20; (nBins)
number of points = 2000; (nPoints)

where the parameter (nBins) is the number of bins in the histogram and (nPoints) is the number of random points. A random array is created using the cauchy distribution. A comparison is made between the histogram of random data and the theoretical probability density function of the cauchy distribution. One can see the results from the cauchy random generator are very close to the theoretical cauchy distribution function.

Running this example generates the results shown above.


           static void TestCauchyDistribution();
              {
                  for (int i = 0; i < nBins; i++)
                 {
                     ListBox1.Items.Add(" x = " + xdata[i] + "," + " - - - - -> Random Data = " + ydata[i] + "," + " - - - - -> Density Distribution = " + Math.Round(ydistribution[i] * normalizeFactor, 0).ToString());
                 }
              }



Other Implementations...


Object-Oriented Implementation
Graphics and Animation
Sample Applications
Ore Extraction Optimization
Vectors and Matrices
Complex Numbers and Functions
Ordinary Differential Equations - Euler Method
Ordinary Differential Equations 2nd-Order Runge-Kutta
Ordinary Differential Equations 4th-Order Runge-Kutta
Higher Order Differential Equations
Nonlinear Systems
Numerical Integration
Numerical Differentiation
Function Evaluation


   Quotes

Consulting Services - Back to Home


Home

Home Math, Analysis,
  expertise..."

EIGENVALUE
SOLUTIONS...


> Rayleigh-Quotient Method

> Cubic Spline Method

 

Applied Mathematical Algorithms

Home

ComplexFunctions

Home

NonLinear
Home

Differentiation
Home

Integration
About Us


KMP Software Engineering is an independent multidisciplinary engineering consulting company specializing in mathematical algorithms.

      (About Us) →
Areas of
Expertise


SpecialFunctions
VectorsMatrices
OptimizationMethods
ComplexNumbers
Interpolation
CurveFitting
NonLinearSystems
LinearEquations
DistributionFunctions
NumericalDifferentiation
NumericalIntegration
DifferentialEquations
Smalltalk
FiniteBoundary
Eigenvalue
Graphics
Understanding
Mining


MiningMastery
MineralNews
MineralCommodities
MineralForum
Crystallography
Services


NumericalModeling
WebServices
MainframeServices
OutsourceServices

LINKED IN
MINE REVIEW(by G.Pacheco)
Brand





Home

Login

Contact
Since 2006 All Rights Reserved  © KMP Software Engineering LINKS | PRIVACY POLICY | LEGAL NOTICE